Spectral Algorithms for Graphical Models Lecturer : Eric

نویسندگان

  • Eric P. Xing
  • Yuan Xie
  • Yulong Pei
  • Junier Oliva
چکیده

Modern machine learning tasks often deal with high-dimensional data. One typically makes some assumption on structure, like sparsity, to make learning tractable over high-dimensional instances. Another common assumption on structure is that of latent variables in the generative model. In latent variable models, one attempts to perform inference not only on observed variables, but also on unobserved latent variable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

22 : Hilbert Space Embeddings of Distributions Lecturer : Eric

The application of classical optimization techniques to Graphical Models has led to specialized derivations of powerful paradigms such as the class of EM algorithms, variational inference, max-margin and maximum entropy learning. This view has also sustained a conceptual bridge between the research communities of Graphical Models, Statistical Physics and Numerical Optimization. The optimization...

متن کامل

A Spectral Algorithm for Latent Tree Graphical Models

Latent variable models are powerful tools for probabilistic modeling, and have been successfully applied to various domains, such as speech analysis and bioinformatics. However, parameter learning algorithms for latent variable models have predominantly relied on local search heuristics such as expectation maximization (EM). We propose a fast, local-minimum-free spectral algorithm for learning ...

متن کامل

Hierarchical Tensor Decomposition of Latent Tree Graphical Models

We approach the problem of estimating the parameters of a latent tree graphical model from a hierarchical tensor decomposition point of view. In this new view, the marginal probability table of the observed variables is treated as a tensor, and we show that: (i) the latent variables induce low rank structures in various matricizations of the tensor; (ii) this collection of low rank matricizatio...

متن کامل

A Spectral Algorithm for Latent Junction Trees

Latent variable models are an elegant framework for capturing rich probabilistic dependencies in many applications. However, current approaches typically parametrize these models using conditional probability tables, and learning relies predominantly on local search heuristics such as Expectation Maximization. Using tensor algebra, we propose an alternative parameterization of latent variable m...

متن کامل

Spectral Learning of General Latent-Variable Probabilistic Graphical Models:A Supervised Learning Approach

In this CS 229 project, I designed, proved and tested a new spectral learning algorithm for learning probabilistic graphical models with latent variables by reducing the hard learning problem into a pipeline of supervised learning tasks. This new algorithmic framework can provide us with more learning power by giving us the freedom to plug in all different kinds of supervised learning algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014